
Rutas y navegación en Angular
Una guía práctica para entender y usar el sistema de routing en aplicaciones
Angular

TEMA 8 2º DAM

INTRODUCCIÓN

¿Qué es el routing y por qué lo necesitamos?
El routing de Angular es la capacidad de navegar entre diferentes vistas o
componentes dentro de una misma aplicación web sin tener que recargar la
página completa. Permite una experiencia de usuario fluida, similar a la de
una aplicación de escritorio.

Esto es fundamental para construir Single Page Applications (SPA), donde
toda la aplicación se carga una sola vez y solo las partes necesarias se
actualizan dinámicamente, mejorando significativamente el rendimiento y la
interacción del usuario.

¿Qué pasa sin routing?
Sin un sistema de routing eficiente, las aplicaciones web
tradicionales enfrentan varias limitaciones:

Necesitas crear múltiples archivos HTML separados para
cada página

Cada navegación requiere recargar toda la página desde
el servidor

Pérdida de estado: los datos en memoria se pierden con
cada recarga

Experiencia de usuario más lenta y menos fluida

Mayor consumo de ancho de banda al recargar recursos
repetidos (CSS, JS, imágenes)

Más difícil mantener una experiencia coherente entre
páginas

Ventajas del routing en Angular

Navegación instantánea
Los usuarios cambian de vista sin esperar a que se recargue toda
la página

URLs navegables
Cada vista tiene su propia URL que se puede compartir o guardar
como favorito

Historial del navegador
Los botones de adelante y atrás funcionan correctamente dentro
de la aplicación

Control de acceso
Podemos proteger ciertas rutas para que solo usuarios
autorizados accedan

FUNCIONAMIENTO

¿Cómo funciona el routing en Angular?
El sistema de routing de Angular sigue un flujo bien definido para mostrar el contenido correcto al usuario:

1. URL
El usuario escribe una URL o hace clic en un enlace (ejemplo:
/productos).

2. Router
Angular Router intercepta la navegación y busca la ruta
coincidente en el array de Routes.

3. Componente
El Router identifica qué componente debe cargar según la
configuración de rutas.

4. <router-outlet>
El componente se renderiza dentro del <router-outlet> en el
template principal de la aplicación.

Ejemplo práctico de configuración y flujo:

const routes: Routes = [
 { path: 'productos', component: ProductosComponent }

];

Cuando el usuario navega a /productos → ProductosComponent se carga en <router-outlet>.

CONFIGURACIÓN INICIAL

Instalación del RouterModule
Angular CLI nos facilita el trabajo. Si creamos un proyecto nuevo y respondemos "Sí" cuando pregunta por el routing, Angular configura todo
automáticamente. Pero veamos qué hace por nosotros:

01

Crear el archivo de rutas
Se genera app-routing.module.ts que
contendrá todas nuestras rutas

02

Importar RouterModule
Angular añade el módulo de routing al módulo
principal de la aplicación

03

Añadir router-outlet
Se incluye la etiqueta especial donde se
cargarán los componentes

Consejo: Si tu proyecto ya existe y no tiene routing, puedes añadirlo ejecutando: ng generate module app-routing --flat --module=app

Estructura básica del archivo de rutas
El archivo app-routing.module.ts es el corazón del sistema de
navegación. Aquí definimos qué componente se muestra para cada
URL.

La estructura es sencilla: un array de objetos donde cada objeto
representa una ruta con su path (la URL) y su component (el
componente que se carga).

const routes: Routes = [
 { path: '', component: InicioComponent },
 { path: 'productos', component: ProductosComponent },
 { path: 'contacto', component: ContactoComponent }

];

¿Dónde vive el routing?

app-routing.module.ts
Aquí se definen todas las rutas (el array
de Routes con path y component).

app.module.ts
Aquí se importa el AppRoutingModule
para activar el routing en la aplicación.

app.component.html
Aquí se coloca el <router-outlet> donde
se cargarán los componentes.

El router-outlet: donde ocurre la magia

¿Qué es?
Es una directiva especial de Angular que
actúa como un marcador de posición. Le
indica a Angular: "aquí es donde debes
cargar los componentes según la ruta
activa".

¿Dónde se coloca?
Normalmente en el template de
app.component.html, justo donde
queremos que aparezca el contenido
dinámico de cada vista.

<nav>
 Inicio
 Productos<
/a>

</nav>
<router-outlet></router-outlet>

Ejemplo práctico

Cuando el usuario hace clic en un enlace, Angular carga el componente correspondiente dentro del <router-outlet>, manteniendo intacto el
resto de la página (como el menú de navegación).

NAVEGACIÓN PRÁCTICA

Dos formas de navegar: routerLink y Router

 Ver productos

<button routerLink="/contacto">
 Contactar
</button>

routerLink (en el template)
La forma más común y sencilla. Se usa directamente en las etiquetas
HTML del template:

Angular se encarga de todo: actualiza la URL, carga el componente y
mantiene el historial del navegador.

constructor(
 private router: Router
) {}

guardarDatos() {
 // lógica de guardado
 this.router.navigate(['/exito']);
}

Router (en el TypeScript)
Para navegaciones programáticas, cuando necesitamos redirigir
después de una acción:

Útil para redirigir tras validar un formulario, hacer login, etc.

routerLink vs Router.navigate

Productos
<button routerLink="/contacto">Contactar</button>

routerLink

Uso: En el template (HTML)

Tipo: Directiva declarativa

Cuándo usarlo: Para enlaces y botones que el usuario hace clic

Ventaja: Más simple y directo

constructor(private router: Router) {}

login() {
 if (this.validar()) {

 this.router.navigate(['/dashboard']);
 }
}

Router.navigate

Uso: En el componente (TypeScript)

Tipo: Método programático

Cuándo usarlo: Para navegación después de lógica (validaciones,
guardado, etc.)

Ventaja: Más control y flexibilidad

Enlaces en menú routerLink

Tras login Router.navigate

Tras formulario Router.navigate

Rutas con parámetros
A menudo necesitamos pasar información en la URL. Por ejemplo, para mostrar los detalles de un producto específico, necesitamos su ID.
Angular permite crear rutas dinámicas con parámetros:

¿Para qué sirven los parámetros?

Los parámetros de ruta son esenciales para construir aplicaciones dinámicas y escalables, permitiendo:

Mostrar detalles específicos de un elemento (producto, usuario, artículo) sin necesidad de una ruta fija para cada uno.

Evitar crear una ruta diferente para cada elemento individual.

Hacer las rutas dinámicas y reutilizables en toda la aplicación.

Por ejemplo, en lugar de crear /producto1, /producto2, /producto3... usamos una única ruta dinámica como /producto/:id para acceder a
cualquier producto.

Cómo usar parámetros en rutas

{ path: 'producto/:id', component:
DetalleComponent }

1. Definir la ruta

Los dos puntos indican que id es un
parámetro variable

Ver
producto

2. Navegar con parámetros

O desde TypeScript:
this.router.navigate(['/producto', 42])

constructor(private route:
ActivatedRoute) {}

ngOnInit() {

 this.id =
this.route.snapshot.paramMap.get('id');
}

3. Leer el parámetro

Ruta comodín y redirecciones

{
 path: '**',
 component: PaginaNoEncontradaComponent

}

Página 404 personalizada
Cuando un usuario escribe una URL que no existe, podemos
mostrar un componente de error personalizado:

Importante: Esta ruta debe ir siempre al final del
array, ya que Angular evalúa las rutas en orden y **
coincide con cualquier URL.

{
 path: '',
 redirectTo: '/inicio',

 pathMatch: 'full'
}

Redirecciones automáticas
Podemos redirigir automáticamente de una ruta a otra. Es útil para la ruta
raíz o para URLs antiguas:

El pathMatch: 'full' asegura que solo redirija cuando la URL coincida
exactamente (vacía en este caso).

routerLinkActive: resaltar la ruta activa
Es muy útil mostrar visualmente en qué página está el usuario. La directiva routerLinkActive añade automáticamente una clase CSS al enlace
activo:

<nav>
 <a routerLink="/inicio"
 routerLinkActive="activo">
 Inicio

 <a routerLink="/productos"
 routerLinkActive="activo">
 Productos

 <a routerLink="/contacto"
 routerLinkActive="activo">
 Contacto

</nav>

Después, en el CSS, defines el estilo para la clase .activo (por ejemplo, un
color diferente o un borde inferior).

Para la ruta raíz /, añade [routerLinkActiveOptions]="{exact: true}" para que solo se active con coincidencia exacta.

Recapitulación: conceptos clave
1

Router Module
El módulo de Angular que gestiona toda
la navegación de la aplicación

2

Routes array
Array de objetos que mapea URLs a
componentes específicos

3

router-outlet
Directiva que marca dónde se cargarán
los componentes según la ruta activa

4

routerLink
Directiva para crear enlaces de navegación en los templates
HTML

5

ActivatedRoute
Servicio para acceder a información sobre la ruta actual, como
parámetros

Con estos elementos ya puedes crear aplicaciones Angular con navegación completa y profesional. ¡Ahora toca practicar!

Recursos utilizados y para profundizar
Explore estos recursos clave para profundizar en el routing de Angular:

Guía oficial de Angular Router
La documentación oficial es el mejor punto de partida para
entender a fondo la funcionalidad.

Angular University
En Angular University (YouTube) encontrarás tutoriales en vídeo
y explicaciones prácticas sobre el ecosistema de Angular,
incluyendo routing.

Ultimate Courses - Angular Router Tutorial
Ultimate Courses ofrece artículos detallados con ejemplos de
código y buenas prácticas.

Stack Overflow
Explora Stack Overflow, una comunidad activa para encontrar
soluciones a problemas comunes y aprender de otros
desarrolladores.

https://angular.io/guide/router
https://www.youtube.com/c/AngularUniversity
https://ultimatecourses.com/blog/angular-router-tutorial
https://stackoverflow.com/questions/tagged/angular-router

