Rutas y navegacion en Angular

Una guia practica para entender y usar el sistema de routing en aplicaciones
Angular

TEMA 8 2° DAM

]

|l |0 O

>

x>

© S

&2, INTRODUCCION

¢ Que es el routing y por qué lo necesitamos?

El routing de Angular es la capacidad de navegar entre diferentes vistas o
componentes dentro de una misma aplicacion web sin tener que recargar la
pagina completa. Permite una experiencia de usuario fluida, similar a la de
una aplicacion de escritorio.

Esto es fundamental para construir Single Page Applications (SPA), donde
toda la aplicacion se carga una sola vez y solo las partes necesarias se
actualizan dinamicamente, mejorando significativamente el rendimiento y la
interaccion del usuario.

A 4

¢ Queé pasa sin routing?

Sin un sistema de routing eficiente, las aplicaciones web
tradicionales enfrentan varias limitaciones:

e Necesitas crear multiples archivos HTML separados para
cada pagina

e Cada navegacion requiere recargar toda la pagina desde
el servidor

e Pérdida de estado: los datos en memoria se pierden con
cada recarga

e Experiencia de usuario mas lenta y menos fluida

e Mayor consumo de ancho de banda al recargar recursos
repetidos (CSS, JS, imagenes)

e Mas dificil mantener una experiencia coherente entre
paginas

.
.
.

L
Jy_|

]

il

I
]

JRIR

]

m |

Ventajas del routing en Angular

Navegacion instantanea URLs havegables

Los usuarios cambian de vista sin esperar a que se recargue toda Cada vista tiene su propia URL que se puede compartir o guardar
la pagina como favorito

Historial del navegador Control de acceso

Los botones de adelante y atras funcionan correctamente dentro Podemos proteger ciertas rutas para que solo usuarios

de la aplicacién autorizados accedan

0 FUNCIONAMIENTO

¢Como funciona el routing en Angular?

El sistema de routing de Angular sigue un flujo bien definido para mostrar el contenido correcto al usuario:

2. Router
1. URL Angular Router intercepta la navegacion y busca la ruta
El usuario escribe una URL o hace clic en un enlace (ejemplo: coincidente en el array de Routes.
/productos).

4. <router-outlet>

3. Componente El componente se renderiza dentro del <router-outlet> en el

El Router identifica qué componente debe cargar segun la template principal de la aplicacion.
configuracion de rutas.

Ejemplo practico de configuracion y flujo:

const routes: Routes = [
{ path: 'productos’', component: ProductosComponent }

1;

Cuando el usuario navega a /productos - ProductosComponent se carga en <router-outlet>.

{ CONFIGURACION INICIAL

Instalacion del RouterModule

Angular CLI nos facilita el trabajo. Si creamos un proyecto nuevo y respondemos "Si" cuando pregunta por el routing, Angular configura todo
automaticamente. Pero veamos qué hace por nosotros:

01 02 03

Crear el archivo de rutas Importar RouterModule Anadir router-outlet

Se genera app-routing.module.ts que Angular anade el médulo de routing al médulo Se incluye la etiqueta especial donde se
contendra todas nuestras rutas principal de la aplicacion cargaran los componentes

[J Consejo: Situ proyecto ya existe y no tiene routing, puedes afadirlo ejecutando: ng generate module app-routing --flat --module=app

Estructura basica del archivo de rutas

El archivo app-routing.module.ts es el corazén del sistema de

., , .. , const routes: Routes = [
navegacion. Aqui definimos qué componente se muestra para cada

{ path: ", component: InicioComponent },

URL.

{ path: 'productos’, component: ProductosComponent },
La estructura es sencilla: un array de objetos donde cada objeto { path: 'contacto’, component: ContactoComponent }
representa una ruta con su path (la URL) y su component (el 1;

componente que se carga).

cDonde vive el routing?

app-routing.module.ts app.module.ts app.component.html

Aqui se definen todas las rutas (el array Aqui se importa el AppRoutingModule Aqui se coloca el <router-outlet> donde
de Routes con path y component). para activar el routing en la aplicacion. se cargaran los componentes.

El router-outlet: donde ocurre la magia

¢Qué es? ¢Donde se coloca? Ejemplo practico

Es una directiva especial de Angular que Normalmente en el template de

actua como un marcador de posicion. Le app.component.html, justo donde <nav>

indica a Angular: "aqui es donde debes queremos que aparezca el contenido Inicio

cargar los componentes segun la ruta dinamico de cada vista. <a

activa". routerLink="/productos">Productos<
/a>
</nav>

<router-outlet></router-outlet>

Cuando el usuario hace clic en un enlace, Angular carga el componente correspondiente dentro del <router-outlet>, manteniendo intacto el
resto de la pagina (como el menu de navegacion).

@ NAVEGACION PRACTICA

Dos formas de navegar: routerLink y Router

routerLink (en el template) Router (en el TypeScript)
La forma mas comun y sencilla. Se usa directamente en las etiquetas Para navegaciones programaticas, cuando necesitamos redirigir
HTML del template: después de una accion:
 constructor(
Ver productos private router: Router
) {
<button routerLink="/contacto"> guardarDatos() {
Contactar // légica de guardado
</button>

this.router.navigate(['/exito']);

}

Angular se encarga de todo: actualiza la URL, carga el componente y

mantiene el historial del navegador. Util para redirigir tras validar un formulario, hacer login, etc.

routerLink vs Router.navigate

routerLink Router.navigate

Uso: En el template (HTML) Uso: En el componente (TypeScript)

Tipo: Directiva declarativa Tipo: Método programatico

Cuando usarlo: Para enlaces y botones que el usuario hace clic Cuando usarlo: Para navegacion después de légica (validaciones,

guardado, etc.)

Productos
<button routerLink="/contacto">Contactar</button> constructor(private router: Router) {}

login() {
if (this.validar()) {
this.router.navigate(['/dashboard']);

}
}

Ventaja: Mas simple y directo

Ventaja: Mas control y flexibilidad

Enlaces en menu routerLink

Tras login Router.navigate

Tras formulario Router.navigate

Rutas con parametros

A menudo necesitamos pasar informacién en la URL. Por ejemplo, para mostrar los detalles de un producto especifico, necesitamos su ID.

Angular permite crear rutas dinamicas con parametros:

¢Para qué sirven los parametros?

Los parametros de ruta son esenciales para construir aplicaciones dinamicas y escalables, permitiendo:

e Mostrar detalles especificos de un elemento (producto, usuario, articulo) sin necesidad de una ruta fija para cada uno.
e Evitar crear una ruta diferente para cada elemento individual.

e Hacer las rutas dinamicas y reutilizables en toda la aplicacion.

Por ejemplo, en lugar de crear /producto1, /producto2, /producto3... usamos una unica ruta dinamica como /producto/:id para acceder a
cualquier producto.

Como usar parametros en rutas

© % Q

1. Definir la ruta 2. Navegar con parametros 3. Leer el parametro
{ path: 'producto/:id', component: Ver constructor(private route:
DetalleComponent } producto ActivatedRoute) {}

Los dos puntos indican que id es un O desde TypeScript: ngOnInit() {

parametro variable this.router.navigate(['/producto’, 42]) this.id =

this.route.snapshot.paramMap.get('id");
}

4404

Ruta comodin y redirecciones

Page not found

*ﬁ
)

Pagina 404 personalizada Redirecciones automaticas
Cuando un usuario escribe una URL que no existe, podemos Podemos redirigir automaticamente de una ruta a otra. Es util para la ruta
mostrar un componente de error personalizado: raiz o para URLs antiguas:
{ {
path: '**', path: ",
component: PaginaNoEncontradaComponent redirectTo: '/inicio',
} pathMatch: 'full'
}
L) Importante: Esta ruta debe ir siempre al final del El pathMatch: 'full' asegura que solo redirija cuando la URL coincida
array, ya que Angular evalua las rutas en orden y ** exactamente (vacia en este caso).

coincide con cualquier URL.

routerLinkActive: resaltar la ruta activa

Es muy util mostrar visualmente en qué pagina esta el usuario. La directiva routerLinkActive anade automaticamente una clase CSS al enlace
activo:

<nav>
<a routerLink="/inicio"
routerLinkActive="activo">
Inicio

<a routerLink="/productos"

routerLinkActive="activo">

Productos 2 @
[

ie
5
©

Lrwanino Lmainino Limdélaino

<a routerLink="/contacto"

routerLinkActive="activo">
Contacto

</nav>

Después, en el CSS, defines el estilo para la clase .activo (por ejemplo, un
color diferente o un borde inferior).

(J Para la ruta raiz /, afiade [routerLinkActiveOptions]="{exact: true}" para que solo se active con coincidencia exacta.

Recapitulacion: conceptos clave

—— —0— —0—

Router Module Routes array router-outlet

El mddulo de Angular que gestiona toda Array de objetos que mapea URLs a Directiva que marca donde se cargaran
la navegacion de la aplicacion componentes especificos los componentes segun la ruta activa
routerLink ActivatedRoute

Directiva para crear enlaces de navegacion en los templates Servicio para acceder a informacion sobre la ruta actual, como
HTML parametros

Con estos elementos ya puedes crear aplicaciones Angular con navegacion completa y profesional. jAhora toca practicar!

Recursos utilizados y para profundizar

Explore estos recursos clave para profundizar en el routing de Angular:

Guia oficial de Angular Router Angular University
La documentacion oficial es el mejor punto de partida para En Angular University (YouTube) encontraras tutoriales en video
entender a fondo la funcionalidad. y explicaciones practicas sobre el ecosistema de Angular,

incluyendo routing.

Ultimate Courses - Angular Router Tutorial Stack Overflow
Ultimate Courses ofrece articulos detallados con ejemplos de Explora Stack Overflow, una comunidad activa para encontrar
codigo y buenas practicas. soluciones a problemas comunes y aprender de otros

desarrolladores.

https://angular.io/guide/router
https://www.youtube.com/c/AngularUniversity
https://ultimatecourses.com/blog/angular-router-tutorial
https://stackoverflow.com/questions/tagged/angular-router

